p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.502C23, C4.232- 1+4, (C4×D8)⋊17C2, (C8×Q8)⋊11C2, D4.Q8⋊9C2, C4⋊C4.275D4, C4.Q16⋊16C2, D4⋊3Q8⋊11C2, (C4×SD16)⋊46C2, D4.2D4⋊9C2, C2.61(D4○D8), C4.75(C4○D8), C4⋊D8.10C2, C4.4D8⋊31C2, (C4×C8).92C22, (C2×Q8).183D4, D4.35(C4○D4), C4⋊C8.324C22, C4⋊C4.429C23, (C2×C4).553C24, (C2×C8).205C23, C4⋊Q8.182C22, C2.61(Q8⋊5D4), (C4×D4).193C22, (C2×D4).266C23, (C2×D8).147C22, C4⋊1D4.95C22, (C2×Q8).252C23, (C4×Q8).307C22, C4.Q8.174C22, C2.D8.200C22, D4⋊C4.18C22, C4.4D4.75C22, C22.813(C22×D4), C42.C2.60C22, C22.53C24⋊3C2, C42.78C22⋊6C2, Q8⋊C4.142C22, (C2×SD16).169C22, C2.73(C2×C4○D8), C4.254(C2×C4○D4), (C2×C4).175(C2×D4), SmallGroup(128,2093)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.502C23
G = < a,b,c,d,e | a4=b4=e2=1, c2=b2, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=a2c, ece=bc, de=ed >
Subgroups: 360 in 181 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, C4×C8, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C4×D4, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C4⋊1D4, C4⋊Q8, C2×D8, C2×SD16, C4×D8, C4×SD16, C8×Q8, C4⋊D8, D4.2D4, C4.Q16, D4.Q8, C4.4D8, C42.78C22, D4⋊3Q8, C22.53C24, C42.502C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4○D8, C22×D4, C2×C4○D4, 2- 1+4, Q8⋊5D4, C2×C4○D8, D4○D8, C42.502C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23 25 17)(2 24 26 18)(3 21 27 19)(4 22 28 20)(5 15 9 64)(6 16 10 61)(7 13 11 62)(8 14 12 63)(29 37 41 35)(30 38 42 36)(31 39 43 33)(32 40 44 34)(45 53 51 57)(46 54 52 58)(47 55 49 59)(48 56 50 60)
(1 55 25 59)(2 56 26 60)(3 53 27 57)(4 54 28 58)(5 38 9 36)(6 39 10 33)(7 40 11 34)(8 37 12 35)(13 32 62 44)(14 29 63 41)(15 30 64 42)(16 31 61 43)(17 49 23 47)(18 50 24 48)(19 51 21 45)(20 52 22 46)
(1 57 27 55)(2 60 28 54)(3 59 25 53)(4 58 26 56)(5 44 11 30)(6 43 12 29)(7 42 9 32)(8 41 10 31)(13 36 64 40)(14 35 61 39)(15 34 62 38)(16 33 63 37)(17 51 21 47)(18 50 22 46)(19 49 23 45)(20 52 24 48)
(1 29)(2 30)(3 31)(4 32)(5 60)(6 57)(7 58)(8 59)(9 56)(10 53)(11 54)(12 55)(13 52)(14 49)(15 50)(16 51)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(25 41)(26 42)(27 43)(28 44)(45 61)(46 62)(47 63)(48 64)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,37,41,35)(30,38,42,36)(31,39,43,33)(32,40,44,34)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,25,59)(2,56,26,60)(3,53,27,57)(4,54,28,58)(5,38,9,36)(6,39,10,33)(7,40,11,34)(8,37,12,35)(13,32,62,44)(14,29,63,41)(15,30,64,42)(16,31,61,43)(17,49,23,47)(18,50,24,48)(19,51,21,45)(20,52,22,46), (1,57,27,55)(2,60,28,54)(3,59,25,53)(4,58,26,56)(5,44,11,30)(6,43,12,29)(7,42,9,32)(8,41,10,31)(13,36,64,40)(14,35,61,39)(15,34,62,38)(16,33,63,37)(17,51,21,47)(18,50,22,46)(19,49,23,45)(20,52,24,48), (1,29)(2,30)(3,31)(4,32)(5,60)(6,57)(7,58)(8,59)(9,56)(10,53)(11,54)(12,55)(13,52)(14,49)(15,50)(16,51)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(45,61)(46,62)(47,63)(48,64)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,9,64)(6,16,10,61)(7,13,11,62)(8,14,12,63)(29,37,41,35)(30,38,42,36)(31,39,43,33)(32,40,44,34)(45,53,51,57)(46,54,52,58)(47,55,49,59)(48,56,50,60), (1,55,25,59)(2,56,26,60)(3,53,27,57)(4,54,28,58)(5,38,9,36)(6,39,10,33)(7,40,11,34)(8,37,12,35)(13,32,62,44)(14,29,63,41)(15,30,64,42)(16,31,61,43)(17,49,23,47)(18,50,24,48)(19,51,21,45)(20,52,22,46), (1,57,27,55)(2,60,28,54)(3,59,25,53)(4,58,26,56)(5,44,11,30)(6,43,12,29)(7,42,9,32)(8,41,10,31)(13,36,64,40)(14,35,61,39)(15,34,62,38)(16,33,63,37)(17,51,21,47)(18,50,22,46)(19,49,23,45)(20,52,24,48), (1,29)(2,30)(3,31)(4,32)(5,60)(6,57)(7,58)(8,59)(9,56)(10,53)(11,54)(12,55)(13,52)(14,49)(15,50)(16,51)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(45,61)(46,62)(47,63)(48,64) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23,25,17),(2,24,26,18),(3,21,27,19),(4,22,28,20),(5,15,9,64),(6,16,10,61),(7,13,11,62),(8,14,12,63),(29,37,41,35),(30,38,42,36),(31,39,43,33),(32,40,44,34),(45,53,51,57),(46,54,52,58),(47,55,49,59),(48,56,50,60)], [(1,55,25,59),(2,56,26,60),(3,53,27,57),(4,54,28,58),(5,38,9,36),(6,39,10,33),(7,40,11,34),(8,37,12,35),(13,32,62,44),(14,29,63,41),(15,30,64,42),(16,31,61,43),(17,49,23,47),(18,50,24,48),(19,51,21,45),(20,52,22,46)], [(1,57,27,55),(2,60,28,54),(3,59,25,53),(4,58,26,56),(5,44,11,30),(6,43,12,29),(7,42,9,32),(8,41,10,31),(13,36,64,40),(14,35,61,39),(15,34,62,38),(16,33,63,37),(17,51,21,47),(18,50,22,46),(19,49,23,45),(20,52,24,48)], [(1,29),(2,30),(3,31),(4,32),(5,60),(6,57),(7,58),(8,59),(9,56),(10,53),(11,54),(12,55),(13,52),(14,49),(15,50),(16,51),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(25,41),(26,42),(27,43),(28,44),(45,61),(46,62),(47,63),(48,64)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 4I | ··· | 4M | 4N | 4O | 4P | 4Q | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C4○D8 | 2- 1+4 | D4○D8 |
kernel | C42.502C23 | C4×D8 | C4×SD16 | C8×Q8 | C4⋊D8 | D4.2D4 | C4.Q16 | D4.Q8 | C4.4D8 | C42.78C22 | D4⋊3Q8 | C22.53C24 | C4⋊C4 | C2×Q8 | D4 | C4 | C4 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 1 | 4 | 8 | 1 | 2 |
Matrix representation of C42.502C23 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
3 | 3 | 0 | 0 |
3 | 14 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[13,0,0,0,0,4,0,0,0,0,0,13,0,0,4,0],[4,0,0,0,0,4,0,0,0,0,0,4,0,0,4,0],[3,3,0,0,3,14,0,0,0,0,1,0,0,0,0,1] >;
C42.502C23 in GAP, Magma, Sage, TeX
C_4^2._{502}C_2^3
% in TeX
G:=Group("C4^2.502C2^3");
// GroupNames label
G:=SmallGroup(128,2093);
// by ID
G=gap.SmallGroup(128,2093);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,568,758,346,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=b^2,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*c,e*c*e=b*c,d*e=e*d>;
// generators/relations